HomeEditors DeskArtificial intelligence and Water: its benefit on effective planning and Management

Artificial intelligence and Water: its benefit on effective planning and Management

Megha Chaubey is an M.Phil in Interconnection Networks and Computer Science

Artificial Intelligence Vs. Human Intelligence

The ability to learn from experience or evolving intelligent thinking is the key characteristic of human intelligence. Now the question arises as to whether the machines can be made to carry out intelligent thinking without to human interface. Nowadays the global community is working using Artificial Intelligence to create machine man.

It is high time for people to know about this technology and its applications with its benefits to humankind and the implementation for effective planning and management of water resources available on the planet earth.

Artificial Intelligence

If we recognized that the key objective of AI technologies is to enable learning (from data), e.g. It is the key objectives of AI to solve problems, complete multiple tasks, and play with huge data, integration between human and machine, ability in planning and ultimate performance in water management.  AI can be used to predict the risk of flooding beyond an acceptable socioeconomic threshold, forecast demand in a water distribution system, or estimate sediment transport rates in a river.

The key point here is that AI can be considered a way of creating useful models or methods to perform a complex task normally used to carry out by humans.

AI in Water Research and Practice

The global community has already benefited from the application of AI techniques in Hydro-environment research and practice. The Google search history shows an increasing trend with searching the keywords i.e. Machine Learning and Genetic Algorithm with “Water” and a huge number of research publications available on the internet being referred. More recently, a survey of ML methods for flood prediction indicated a trend of moving to ensemble methods and hybridized approaches where two or more ML techniques are used to predict the output variable. Widespread sensor deployment and availability of remote sensing data also offer new opportunities to hydro-environment practitioners.

They can help identify better model parameters, integrate ML with traditional mechanistic (physics-based) models or replace those when high speed of model execution is required. The use of deep learning methods in hydro-environmental practice is in a relatively early stage of development, however, the greater availability of data (and particularly big data through remote sensing) provides further opportunities for these types of AI methods.

[responsivevoice_button buttontext="Listen This Post" voice="Hindi Female"]

LEAVE A REPLY

Please enter your comment!
Please enter your name here

RELATED ARTICLES

Trending News

Pathaan Estimated Box Office 4th Day Collection: Shah Rukh Khan Movies grossing a total of ₹212 million

After Pathaan grossed ₹57 crore on its opening day in India, the Shah Rukh Khan film once again collected...

PDP chief Mehbooba Mufti joins Bharat Jodo Yatra led by Rahul Gandhi in Jammu and Kashmir

The Bharat Jodo Yatra at the Congress entered its final round on Saturday as the march led by Rahul...

Bal Gangadhar Tilak: one of the most important leaders of the Indian Independence Movement

Bala Gangadhar Tilak was born in 1856 in Ratnagiri, present day Maharashtra into a middle-class Hindu family; he received...

Government notifies complaints appeals boards to deal with complaints against social media firms

The Center has notified three Complaints Appeal Boards to deal with user complaints on social media and other internet...